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Simplified model under assumption that all SNPs have the same
prior

The probability space for a single SNP can be fully partitioned into (p0, p1, p2, p12), where p0 is the prior
probability that a SNP is not associated with either trait, p1 is defined as the prior probability that the
SNP is only associated with trait 1, p2 the prior probability that the SNP is associated only with trait 2,
while p12 is the prior probability that the SNP is associated with both traits. We therefore have:

p0 + p1 + p2 + p12 = 1

The priors p0, p1, p2, p12 can vary across SNPs, for example depending on minor allele frequencies, a
measure of imputation quality, proximity to the promoter, function of the SNP. If however the priors do
not vary across SNPs, then equation 1 in the main text becomes:

P (Hh | D) ∝
∑
S∈Sh

P (D | S)P (S) ∝ P (S | S ∈ Sh)×
∑
S∈Sh

P (D | S) (1)

The proportionality (rather than equality) in this equation is a consequence of the normalisation term
P (D) that comes up when the causality is reversed between P (S | D) and P (D | S). This term is
present systematically and cancels out when computing ratios. On the right side of this equation, the
simplification is possible because each binary vector that belongs to the same set Sh has the same prior
probability.

The prior probability of any one configuration in the different sets is:

• If S ∈ S0, then P (S) = pQ0

• If S ∈ S1, then P (S) = pQ−10 × p1

• If S ∈ S2, then P (S) = pQ−10 × p2

• If S ∈ S3, then P (S) = pQ−20 × p1 × p2

• If S ∈ S4, then P (S) = pQ−10 × p12
Because we condition our analysis on having at most one association per trait, these probabilities should
be normalised: P (S) = pQ0 /C, where C is the sum of the probabilities associated with all the assignments
that contain at most one association per trait. However, because subsequent derivations only consider
the ratio of probabilities, the C term cancels out and this normalisation becomes unnecessary. Dividing
each of these probabilities by P (S0) to obtain the ratio of prior odds, and since p0 ≈ 1, the second terms
inside the sum in equation 3 of the main text become:

• If S ∈ S0, then P (S)
P (S0)

=
pQ0
pQ0

= 1

• If S ∈ S1, then P (S)
P (S0)

=
pQ−1
0

pQ0
× p1 = p1

p0
≈ p1

• If S ∈ S2, then P (S)
P (S0)

=
pQ−1
0

pQ0
× p2 = p2

p0
≈ p2

• If S ∈ S3, then P (S)
P (S0)

=
pQ−2
0

pQ0
× p1 × p2 = p1

p0
× p2

p0
≈ p1 × p2

• If S ∈ S4, then P (S)
P (S0)

=
pQ−1
0

pQ0
× p12 = p12

p0
≈ p12
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To compute the first terms inside the sum in equation 3 of the main text, the BFs for each configuration
in a set, we make use of the ABF derived for each SNP-trait association (section below). Two key as-
sumptions are necessary for the following computations. Firstly that the traits are measured in unrelated
individuals, and secondly that the effect sizes for the two traits are independent.

Putting the two terms together, we have:

• P (H0|D)
P (H0|D) = 1

• P (H1|D)
P (H0|D) = p1 ×

∑Q
j=1ABF

1
j

• P (H2|D)
P (H0|D) = p2 ×

∑Q
j=1ABF

2
j

• P (H3|D)
P (H0|D) = p1 × p2 ×

∑
j,k,j 6=k ABF

1
j ABF

2
k

• P (H4|D)
P (H0|D) = p12 ×

∑Q
j=1ABF

1
j ×ABF 2

j

Of note, we can also write:

P (H3 | D)

P (H0 | D)
= p1 × p2 ×

Q∑
j=1

ABF 1
j

Q∑
j=1

ABF 2
j −

[
p1 × p2
p12

× P (H4 | D)

P (H0 | D)

]

Bayes factor computation

We assume that summary statistics for each SNP in the two datasets were obtained by fitting a generalised
linear model with the phenotype as dependent variable and SNP genotype call as independent variable:

Y = µ+ βX

The Bayes factor quantities are estimated from summary statistics using the Asymptotic Bayes Factor
derivation [20]. Using Wakefield’s notations, under the null we assume that the effect size β = 0. Under
the alternative, β is normally distributed with mean 0 and variance W .

To derive the ABF computation, Wakefield uses the fact that asymptotically β̂ → N(β, V ). The distri-

bution of the estimated regression parameters µ̂ and β̂ is:

[
µ̂

β̂

]
∼ Np+1

([
µ
β

] [
Iµµ Iµβ
ITµβ Iββ

]−1)
(2)

The intercept µ is a nuisance parameter which we can remove using the transformation:

γ = µ+
Iµβ
Iµµ

β

In which case the previous equality becomes:

[
γ̂

β̂

]
∼ Np+1

([
γ
β

] [
I∗µµ 0
0T Iββ

]−1)
(3)
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This independence property can be combined with independent priors for both parameters so that one
can only consider β and ignore the effect of the µ term. Hence, after applying the reparameterisation we
have:

BF =

∫
f(β)

f(0)
π(β)dβ

Which then becomes (assuming normality and asymptotic behaviour):

ABF =
√

1− r × exp
[
Z2

2
× r
]

where Z = β̂/
√
V is the Wald test statistic. The shrinkage factor r is the ratio of the variance of the prior

and total variance (r = W/(V +W )). This ratio takes a value between 0 and 1 and measure the relative
contributions of the prior (W) and likelihood (V) to the inference. Values of r closer to 1 indicate a larger

contribution from the likelihood (i.e. the data). The asymptotic posterior distribution of β is N(rβ̂, rV ).
As the sample size increases, V → 0 and r → 1, so that the posterior concentrates around the MLE. We
can compute the Z statistic from the p-values of a standard regression output using |z| = Φ−1(1− p/2),
where Φ−1 is the inverse normal cumulative. Otherwise we can compute the Wald statistics directly if
the estimated regression coefficients β̂ and their variances var(β̂) are supplied.

Variance of the estimated effect size V ar(β̂) = V

The variance of the maximum likelihood estimate β̂ (denoted by V ) can be approximated using the allele
frequency of the variant f , the sample size N and the case control ratio s for binary outcome. It is well
established that the score statistic to test whether the effect size β = 0 is:

U =
∑
i

(Yi − Ȳ )Xj

Score test theory asserts that the variance of U under the null is the inverse of the variance of the
estimated effect size β̂, also under the null. V ar(U) under the null can be estimated in several ways,
including the standard derivation of the Fisher information matrix [52].

We assume that the genotypes X are under Hardy Weinberg equilibrium. Hence X is drawn from a
binomial distribution with success parameter f, which we use to denote the allele frequency.

V ar[Xj ] = 2fj(1− fj)

where fj is the population allele frequency of the SNP j.

When the dataset is a case-control (the trait Y is binomial):

V ar[Y ] = s(1− s)

where s is the proportion of cases in the population. If the outcome variable Y is continuous we assume
that Y is normalised such that V ar(Y ) = 1.

Putting together these equations, we have, in a case control setting:

V = V ar(β̂j) =
1

Ns(1− s)× 2fj(1− fj)
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Choice of priors for the probability that each variant affects the
traits

The prior probabilities assigned to each SNP, p0, p1, p2, p12, are mutually exclusive events. The probability
of a SNP being associated with both traits, p12, can be interpreted using a conditional argument:

p12 = P(SNP associated with both traits)

= P(SNP associated with trait 1)× P(SNP associated with trait 2 | SNP associated with trait 1)

The conditional term in the right hand side of the equation above can be approximated as follows:

P(SNP associated with trait 2 | SNP associated with trait 1) =
p12

(p12 + p1)

=
10−6

(10−6 + 10−4)

≈ 10−6

10−4

≈ 0.01

So in terms of conditional probability, if we assume a prior probability of p12 = 1× 10−6 and p1 = p2 =
1× 10−4, then the prior assumption is that of all SNPs associated with trait 1, 1 in 100 of them will also
be associated with trait 2. Since as we stated previously each SNP belongs to only one of the five sets
corresponding to the five hypotheses, the probability of a SNP not being associated with either trait is:
p0 = 1− (p1 + p2 + p12) ≈ 0.9998 ≈ 1.

Choice of priors for the standard deviation W of the effect size
parameter β

Prior standard deviation of the additive effect parameter β was set to 0.15 for a continuous trait. Owing
to our assumption that V ar(Y ) = 1, this prior corresponds to a variance explained of ∼ 0.01 for a variance
with MAF of 30%.

In a case-control study, we set W = 0.2 for the variance of the log-odds ratio parameter, as was previously
used in WTCCC [32]. The priors chosen for case-control and for quantitative traits are also very similar
to the SNPTEST default ([17] and [53]).

Simulation procedure

To simulate the posterior probability of a common signal (“PP4”) under different scenarios, we used the
imputed genotypes from two different datasets: Whitehall II study (WHII), a longitudinal prospective
cohort study genotyped using the gene-centric Illumina Metabochip [54, 55], and the expression dataset
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described herein. We randomly chose a causal SNP A among genotyped and well imputed SNPs (Rsq >
0.8) from any genomic region in common between the two datasets.

The additive genetic variance explained by the locus is

V ar[βXA] = β2
A × 2fA(1− fA)

where fA is the population allele frequency of the causal SNP A, and βA is the additive effect (in standard
deviations) [56].

For different variance explained for the causal SNP , depending on the simulation scenario, we computed
the true effect at the causal SNP:

βA =

√
V ar[βXA]

2fA(1− fA)

We then simulated the phenotype of the ith individual in each of the two datasets using the computed
true effect βA:

Yi = xiA × βA + ei with ei ∼ N(0, 1)

where xiA is the additive genetic value at the causal SNP of individual i and ei is a random error drawn
from a normal distribution with mean 0 and variance of 1.0.

To simulate p-values from different sample sizes using the original datasets, we computed the expected
value of each estimated beta multiplying the pairwise correlation coefficient r between the causal SNP A
and all other SNPs, by the true value of beta at the causal SNP:

The derivation of this equation is described in the following section.

The expected regression coefficient at a second SNP B in relation to the causal SNP A is then:

βj = βA r

√
fA(1− fA)

fj(1− fj)
. (4)

where fj is a vector or βs for all SNPs excluding the causal SNP.

The difference between the regression coefficients β̂ estimated from the glm and the expected value β,
computed at each SNP, can be considered the standard error of the mean and it varies with 1√

(N)
,

where N is the original sample size. When N is increased, the estimate becomes closer to the true value
β, decreasing the variability of the estimator. Then the simulations with a larger sample size involves
simply rescaling this difference:

(β̂ − β)

√
N

N.new
(5)

Then we can compute the new p-values from the new simulated estimates and standard deviations. We
used this method to perform simulations to find sample size required for colocalisation analysis, and to
find the consequence of using limited variant density.
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Relationship between model parameters and LD

Equation 4 was first derived in [57], where the additive effects for case-control studies were shown to
decay linearly, in proportion to r, the correlation between the causal and marker loci. Here we show the
same relationship holds for quantitative traits.

We use the same LD model, and associated notation, as defined in [57]. To summarise briefly, let A
and B be a pair of biallelic SNPs, with the alleles at each coded by 0 and 1. Let fA be the population
frequency of allele 1 at SNP A, and define fB similarly for SNP B. Let r be the population correlation
coefficient between them, the square of which is a commonly used measure of LD. We can define the
following conditional probabilities on a haplotype level:

q0 = P (A = 1 | B = 0) ,
q1 = P (A = 1 | B = 1) ,

These quantities were shown to be related by the identity,

r = (q1 − q0)

√
fB(1− fB)

fA(1− fA)
,

Let SNP A be a causal and SNP B be a marker. Define the following expectations:

a0 = E(Y | A = 0) , b0 = E(Y | B = 0) ,
a1 = E(Y | A = 1) , b1 = E(Y | B = 1) ,
a2 = E(Y | A = 2) , b2 = E(Y | B = 2) .

Relating these using the LD model gives,

b0 = a0(1− q0)2 + a12q0(1− q0) + a2q
2
0 ,

b1 = a0(1− q0)(1− q1) + a1 (q0(1− q1) + q1(1− q0)) + a2q0q1 ,

b2 = a0(1− q1)2 + a12q1(1− q1) + a2q
2
1 .

Combining and rearranging these gives,

b21 − b0b2 =
(
a21 − a0a2

)
(q1 − q0)

2
.

If we consider an additive model, it is easy to show that b21 − b0b2 = β2
B and a21 − a0a2 = β2

A. Putting
these together gives,

βB = βA r

√
fA(1− fA)

fB(1− fB)
. (6)

Equation 6 is analogous to the respective results from [57] for binary traits. The main difference is that
for quantitative traits here we have shown them to be exact. As before, we can see that the deviation
effect decays more quickly with LD than does the additive effect: quadratically in r rather than linearly.
This implies that the distortion effect described earlier for binary traits will extend also to quantitative
traits.
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Relationship between model parameters and LD using imputed
genotypes

The previous section assumed the genotypes were observed without error. We can derive a similar
relationship in the scenario where we instead use imputed genotype data.

Continuing with the same notation, we now allow A and B to have posterior distributions for each
individual’s genotype. The appropriate analysis should average the likelihood over these posteriors. A
convenient approximation to this is to replace each genotype by its mean posterior value. [28] showed
that this is a good approximation in the GWAS context. This leaves us in a similar situation as before,
except that A and B have become continuous quantitative variables. The following general results apply
for the regression parameters,

βA =
cov(Y,A)

var(A)
,

βB =
cov(Y,B)

var(B)
.

We need two assumptions to complete the derivation. Firstly, we require that Y and B are conditionally
independent given A. In other words, cov(Y,B | A) = 0. This is implicit in the definition of SNP A
being the causal SNP, and is also implicitly assumed in the definitions in the previous section. The only
extension here is that we assume this relationship still holds after imputation. This allows us to simplify
the covariance of Y and B using the law of total covariance,

cov(Y,B) = E(cov(Y,B | A)) + cov(E(Y | A),E(B | A))

= E(0) + cov(E(Y | A),E(B | A))

= cov(E(Y | A),E(B | A)) .

The second assumption we need is that the conditional expectations of Y and B on A are both linear in
A. That is,

E(Y | A) = θY 0 + θY 1A ,

E(B | A) = θB0 + θB1A .

We already make this assumption for the relationship between Y and A, in using a linear regression
model for the trait. The extra part here is that we assume the same type of relationship between the
causal SNP and marker SNP. Since the underlying values for A and B are binary, this is reasonable.

Note that these are just standard linear regression equations, so we have that,

θY 1 =
cov(Y,A)

var(A)
,

θB1 =
cov(B,A)

var(A)
.

Putting all of these formulae together gives,

cov(Y,B) = cov(E(Y | A),E(B | A))

= cov(θY 1A, θB1A)

= θY 1θB1 cov(A,A)

=
cov(Y,A) cov(B,A)

var(A)
.
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Dividing both sides by var(B) gives,

cov(Y,B)

var(B)
=

cov(Y,A)

var(A)

cov(B,A)

var(B)

cov(Y,B)

var(B)
=

cov(Y,A)

var(A)

cov(B,A)√
var(A) var(B)

√
var(A)

var(B)

βB = βA cor(B,A)

√
var(A)

var(B)

βB = βA r

√
var(A)

var(B)
.

This formula is analogous to equation (6). Note that if A and B are observed without error then we
recover the previous formula.

Simulations to find sample size required for colocalisation analysis

We used the simulation method described above to compare the distribution of PP4 of randomly sampled
regions under different scenarios. We used the original sample size of the eQTL dataset (n=966) and a
variance explained of 10% for expression, while varying the sample size of the biomarker dataset and the
proportion of the biomarker’s variance explained by the causal variant.

Simulations to find consequence of using limited variant density

We compared the PP4 of randomly sampled regions, using the simulation procedure described above,
with the PP4 of the same regions after filtering for only the SNPs present in the Illumina 660K Chip
(Figures S1 and S2). The original dataset based on 1000 genomes imputed data will be much denser
than the Illumina dataset. This way we can consider the consequences of having imputed data versus
genotyped data. The same procedure is used to simulate the case when the causal SNP is not included
in the data by excluding the causal SNP only from the Illumina dataset. All analyses were conducted in
R [58].

Simulations for comparison with existing colocalisation tests and
multivariate cases

For simulations comparing proportional and Bayesian approaches, we sampled, with replacement, hap-
lotypes of SNPs with a minor allele frequency of at least 5% found in phased 1000 Genomes Project
data [59] across all 49 genomic regions outside the major histocompatibility complex (MHC) which have
been identified as type 1 diabetes (T1D) susceptibility loci to date, as summarised in T1DBase [60]
(Figures S3 and S4). These represent a range of region sizes and genomic topography typical of GWAS
hits. We excluded the MHC region which is known to have high variation, strong LD and exhibits
huge genetic influence on autoimmune disease risk involving multiple loci and hence requires individual
treatment in any GWAS [61]. For each trait, we selected one or two “causal variants” at random, and
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simulated a Gaussian distributed quantitative trait for which each causal variant SNP explains a specified
proportion of the variance. We either used all SNPs or the subset of SNPs which appear on the Illumina
HumanOmniExpress genotyping array to conduct colocalisation testing to reflect the scenarios of very
dense targeted genotyping versus a less dense GWAS chip. All analyses were conducted in R [58] using
the coloc package for proportional colocalisation testing.

The same procedure is used to further explore multivariate cases in Figure S8.

Simulations for recessive model

For simulations under a recessive pattern of inheritance, we used the same simulation procedure as
described in the previous paragraph, with the difference that after sampling haplotypes we recoded the
major homozygous and heterozygous to 0 and minor homozygous to 1 (Figure S9).
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